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Abstract. Measuring and monitoring the dynamic parameters of a
nanomechanical resonator, in particular the resonance frequency, has received
significant attention recently, in part due to the possibility of very sensitive, fast
and precise mass sensing. Added mass can include chemisorbed or physisorbed
metals or organic molecules, and if sufficiently high sensitivity, dynamic range and
detector speed can be achieved, they could have applications in, e.g., proteomics.
Here, I investigate some of the fundamental limits to mass sensing in such
resonators, discussing the limits imposed by thermomechanical noise on both
the linear operating regime of a simple harmonic oscillator, and the equivalent
limits on nonlinear parametric amplifiers used as parametric sensors. The model
system is a cantilevered flexural resonator, but the results apply equally well (in
most cases) to doubly clamped or torsional resonant structures as well.
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The very small mass of nanomechanical resonators, ranging from nanograms for atomic
force microscope-style cantilevers, to sub-picogram masses for structures with dimensions
below 1 µm, combined with their high-intrinsic quality factor Q, makes such devices very
appealing for applications, such as mass sensing [1]–[5]. A precise monitoring of the natural
resonance frequency ω0 = √

k/m of a simple harmonic oscillator will detect a change of
�ω/ω0 = −�m/2m due to an added mass �m, so a system with a minimum frequency
resolution �ωmin can detect a minimum added mass of �mmin = 2m�ωmin/ω0. Small resonator
masses m and high resonance frequencies ω0 naturally lend themselves to very small detection
limits. The precision �ω with which the frequency can be measured is determined in part by the
quality factor Q of the resonator, which determines the natural linewidth as well as the intrinsic
thermomechanical noise in the system. In any actual implementation, other important limits are
imposed by the frequency stability of the measuring system, as well as environmental issues such
as the temperature stability, but here we focus on the intrinsic limit set by the thermomechanical
noise due to finite Q. We examine both the limits for a linear harmonic oscillator, and for a
parametrically modulated oscillator, as in this latter system, a much narrower resonant response
to an external driving force can be achieved than that set by the quality factor of the system
[6, 7]. In either case, the physical system is a cantilevered beam on whose surface the mass to
be detected is placed.

1. Linear parametric sensing

In figure 1, we display the model system for this paper, a cantilevered beam of length L, width
w and thickness t, oriented along the x-axis, driven into flexural resonance with displacement
along the y-axis.

1.1. Mechanics of a cantilevered beam

Euler–Bernoulli theory [8, 9] applies to such a structure when the aspect ratio L/t � 1, for small
amplitudes of motion. In the absence of dissipation, the transverse displacement Y(x, t) of the
cantilever centreline (along the y-direction) obeys the differential equation

ρwt
∂2Y

∂t2
(x, t) = − ∂2

∂x2
EI

∂2Y

∂x2
(x, t), (1)
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Figure 1. Cantilevered beam with length L, width w and thickness t. The fixed
end is at x = 0 and the free end at x = L. Motion is along the y-axis, and the end
support at x = 0 is assumed infinitely rigid.

where I = wt3/12 is the bending moment of inertia, ρ the material density and E the Young’s
modulus. The end at x = 0 is clamped, that at x = L is free, so that the boundary conditions [9]
are Y(x = 0) = Y ′(x = 0) = 0 and Y ′′(L) = Y ′′′(L) = 0. The solutions to (1) have the form

Yn(x, t) = [an(cos βnx − cosh βnx) + bn(sin βnx − sinh βnx)] exp(−i�nt), (2)

with the eigenvalues βn satisfying cos βnL cosh βnL = −1, with solutions βnL = 1.875, 4.694,

7.855, 10.996 . . . . The frequencies �n are the natural resonance frequencies of the cantilever;
here we will focus on the motion at the fundamental frequency ν1 = �1/2π, where

ν1 = �1

2π
= 0.162

√
E

ρ

t

L2
. (3)

With total resonator mass m = ρwtL, this can be written as

ν1 = 1

2π

√
keff

m
, (4)

with effective spring constant keff = 1.036 Ewt3/L3 = �2
1m.

The mutually orthogonal eigenfunctions Yn in (2) are chosen to be normalized to the beam
length, so that

∫ L

0
Yn(x)Ym(x) dx = L3δmn. (5)

The corresponding coefficients for the n = 1 mode are a1 = −L and b1 = 0.73411L.An arbitrary
solution Y(x, t) to undriven or driven motion can be written as

Y(x, t) =
∞∑

n=1

cn(t)Yn(x), (6)

where the amplitudes cn are dimensionless.
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Dissipation can be included phenomenologically using the Zener model for damping [9, 10],
by introducing the quality factor Q for the resonator material and replacing theYoung’s modulus
by a phenomenologicalYoung’s modulus E → Eeff(1 + i/Q), which yields the damped form for
the resonator motion given by (1)

ω2ρwtY(x) = EeffI

(
1 +

i

Q

)
∂4Y

∂x4
(x). (7)

The spatial solutions Y(x) are the same as for (1), but the dispersion relation giving the damped
eigenfrequencies ν′

n in terms of the undamped frequencies νn is

ν′
n = �′

n

2π
=

(
1 +

i

2Q

)
νn (8)

for small dissipation Q−1. The imaginary part of ν′
n implies that the nth eigenmode will decay

in amplitude as exp(−�nt/2Q).
We now add a harmonic driving force F(x, t) = f exp(iωct), where f is the position-

independent force per unit length. The force is uniform across the beam cross-section and directed
along y-axis, and the carrier frequency ωc is close to �1. The equation of motion is given by [8]

ρ
∂2Y

∂t2
+ Eeff

(
1 +

i

Q

)
∂4Y

∂x4
= f

wt
eiωct. (9)

For ωc close to �1, and waiting long enough for the transients to die out, only the n = 1 term in
(6) has a significant amplitude, with amplitude given by

c1 = η1

�2
1 − ω2

c + i �2
1/Q

f

m
, (10)

where η1 = 0.7829 and the corresponding displacement of the beam is Y(x, t) =
c1Y1(x) exp(iωct). The on-resonance amplitude, for ωc = �1 and high Q, is c1 = −iη1Qf/m�2

1,
lagging the force by 90◦.

The linear response represented by (10) holds for small amplitudes c1. A practical limit
to the amplitude is when c1 ≈ 1, when the end displacement ymax = c1Y1(x = L) = 2L, which
occurs for a driving force per unit length f = m�2

1/η1Q.
In the absence of noise, the solution (10) represents pure harmonic motion at the carrier

frequency ωc, with a fixed, time-invariant amplitude ymax = 2c1L. However, the nonzero values
of Q−1 and temperature T necessitates the presence of noise, from the fluctuation–dissipation
theorem. This acts to thermalize the motion of the resonator, so that the amplitude acquires
a time dependence, c(t) = c1 + cn(t), where the mean energy of the noise amplitude cn(t),
〈En〉, is equal to kBT , where T is greater than or equal to the physical temperature of the
resonator [11, 12].

1.2. Noise in the cantilevered beam

Thermalization occurs due to the presence of a noise force fN(x, t) per unit length of the beam,
with white spectral density. The spectral density of the resulting noise-driven amplitude yn(t) of
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the fundamental mode is given by

Sn(ω) = 4L2

(�2
1 − ω2)2 + (�2

1/Q)2

Sf (ω)

m2
. (11)

In the thermal limit, the noise spectral density Sf is given by

Sf (ω) = 2kBTm�1

πQL2
. (12)

A one-dimensional simple harmonic oscillator has the equivalent thermal force density SF(ω) =
2kBTm�/πQ. The spectral density of the amplitude noise that results from (12) is

Sn(ω) = �1

(�2
1 − ω2)2 + (�2

1/Q)2

8kBT

πmQ
. (13)

The amplitude noise yn(t) can equivalently be regarded as ‘phase’ noise. The phase noise
power density Sφ(ω) at frequency ω from the carrier frequency is given by [10]

Sφ(ω) = 1

2

Sn(�1 + ω)

4L2|c1|2 = �1

(2�1ω + ω2)2 + (�2
1/Q)2

kBT

π|c1|2L2mQ
. (14)

For frequencies well off the peak resonance, ω � �1/Q, but small compared to the resonance
frequency, ω 
 �1, this may be written as

Sφ(ω) ≈ 1

4πεcQ

(
�1

ω

)2

(�1/Q 
 ω 
 �1). (15)

Here, we define εc = m�2
1L

2|c1|2/kBT = keffL
2|c1|2/kBT , the energy of motion in units of the

thermal energy. This can be written in terms of frequency f = 2πω as

Sφ(f ) ≈ 1

2εcQ

(
ν1

f

)2

(ν1/Q 
 f 
 ν1). (16)

The phase noise can equivalently be viewed as frequency fluctuations, where the amplitude
c(t) has a time dependence given by the carrier frequency ωc with a modulation δω(t) = dφ/dt

c(t) = c0 sin

{∫ t

−∞
[ωc + δω(t)] dt′ + θ

}
. (17)

We consider a single-phase modulation component, so that φ(t) = φ0 sin(ωt). The frequency
variation is then

δω(t) = δω0 cos(ωt) = ωφ0 cos(ωt). (18)
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Figure 2. Dependence of theAllan variance σA on the dimensionless time interval
�1τA; the Allan variance has been scaled to remove the overall dependence on Q

and on drive energy εc = keffL
2/kBT . The full dependence from (14) is plotted

as a solid line, while the approximate form (21) is plotted as a dotted line.

The frequency fluctuations can be quantified by the dimensionless Allan variance σA(τA)

[10, 13, 14], defined as the variance over time in the measured frequency

σ2
A(τA) = 1

2f 2
c

1

N − 1

N∑
m=2

(f̄ m − f̄ m−1)
2, (19)

where f̄ m is the average frequency measured over the mth time interval, of length �t = τA, and
fc is the carrier frequency. The squared Allan variance is related to the phase noise density Sφ(ω)

by [14]

σ2
A(τA) = 2

(
2

ωcτA

)2 ∫ ∞

0
Sφ(ω) sin4(ωτA/2) dω, (20)

where ωc = 2πfc and ω is the modulation frequency.
For the approximate form for the phase noise density (16), the Allan variance is

σA(τA) = 1

2

√
1

εcQ�1τA

. (21)

The Allan variance falls inversely with the square root of the measurement time τA, and is
proportional to the square root of the dissipation Q−1/2. Other things being equal, increasing the
resonator frequency �1 lowers the Allan variance.

In figure 2, we display the approximate result (21) as a function of �1τA, scaled to remove
the dependence on Q and on Pc; we also show the full result obtained from integrating (14), for
values of Q > 100; for values of Q less than this, the calculated value for the scaled variance
falls below the plotted values. We see that the approximate expression given by (21) works quite
well for averaging times τA more than a few tens of the oscillation period 2π/�1.
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Table 1. Parameters for the resonators considered in this calculation. The
resonators are assumed to be made of silicon, with ρ = 2330 kg m−3 and E =
1.69 × 1011 N m−2.

L (µm) t (µm) w (µm) m ν1

0.5 0.05 0.05 2.91 fg 276 MHz
5 0.5 0.5 2.91 pg 27.6 MHz
50 0.5 0.5 29.1 pg 27.1 kHz

1.3. Mass sensing

The addition of a small mass δm at one point on the resonator surface will change the resonator’s
natural resonance frequencies νn. The degree of change will depend on where along the length of
the resonator the mass is placed, with the largest change at the beam midpoint. Here, we assume
for simplicity that the mass adds uniformly to the mass of the overall resonator and then changes
the fundamental resonance frequency by an amount δν1 given by

δν1 = dν1

dm
δm = 1

2

δm

m
ν1. (22)

The detection of small masses clearly is improved by using small resonator masses m and large
resonator frequencies ν1. However, the ability to detect such a change is limited by the natural
fluctuations in resonator frequency, as quantified by the Allan variance. Here, we take the simple
rule that the minimum detectable change is that which gives a fractional change in frequency
equal to the Allan variance, δν1/ν1 = σA, or

δm

m
= 2

δν1

ν1
= 2σA =

√
kBT

keffL2

1

Q�1τA

. (23)

We can calculate what the detectable mass limits are for different resonator geometries,
temperatures and quality factors, using (23). We consider three different resonator geometries,
ranging from roughly atomic force microscope cantilever dimensions to the smallest dimensions
that can easily be made using top-down lithographic processing. The three resonators are
enumerated in table 1.

The minimum mass sensitivities of these resonators are plotted in figure 3, as a function
of the resonator Q, ranging from 103 to 106, all calculated at room temperature. Reducing the
temperature to liquid helium temperatures yields a factor of eight improvement in the mass
sensitivity, scaling as T 1/2.

Clearly, the potential for single-proton detection is within reach for the smallest resonator
at room temperature, even with relatively poor Q. Larger cantilevers can also achieve the same
performance level at sufficiently high Q or if operated cryogenically. For practical applications
of these devices to, e.g., proteomics, short measurement times are needed; if we assume a
measurement time τA = 1 ms, then the smallest cantilever in figure 3 could achieve single-proton
sensing if a Q of about 1000 can be achieved, and if the thermomechanical noise is the dominant
noise source.
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Figure 3. Minimum detectable mass using three different cantilever geometries,
ranging in length from 0.5 µm (——) to 5 µm (– – –) to 50 µm (–·–·–·–). Mass
is taken in units of the proton mass mp per root Hz averaging time. All at room
temperature.

2. Nonlinear parametric sensing

We now turn to a discussion of whether better sensitivity can be achieved using a parametric
amplifier, again based on a cantilevered geometry such as that shown in figure 1. We base
our calculation on the simple harmonic oscillator model for the cantilever vibration, where the
transverse displacement y(t) at the free end of the cantilever is treated as a single degree of
freedom, with total effective mass m and spring constant keff , the latter chosen to yield the actual
resonance frequency �2

1 = keff/m of the cantilevered resonator. In addition, however, we add
to the dynamic equation of motion, a modulation of the spring constant km(t) that is externally
controlled. Such a modulation can be achieved in practice using, e.g. a capacitive coupling
between the cantilever and an external voltage source, as described by Rugar and Grütter [15].

Parametric amplification is achieved in this system by modulating km at twice the resonance
frequency �1 of the system. The advantage of using parametric amplification is that, as the
modulation km(t) is increased in amplitude, the response of the resonator to a weak external
driving force F(t) (e.g. a signal to be detected) is significantly amplified for drive frequencies
near the resonance frequency �1. The resonance width is also significantly narrowed, so that
for parametric sensing the determination of the frequency appears to be improved over that of a
simple harmonic oscillator system. Here, we investigate the noise limitations to this approach,
calculating the phase noise and Allan variance for a parametric oscillator driven near its first
critical point (see below).

2.1. Mechanics of parametric sensing

The equation of motion for the parametric oscillator is given by

m
d2y

dt2
+

m�1

Q

dy

dt
+ [keff + km(t)] y = F(t). (24)
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This equation can be re-written using the Louisell transformations for a parametric electronic
system [15, 16]. We define the complex resonance frequency ω1 as

ω1 = �1

[√
1 − 1

4Q2
+

i

2Q

]
. (25)

Note that |ω1|2 = �1, ω1 + ω�
1 = 2�1(1 − 1/4Q2)1/2, and ω1 − ω�

1 = i�1/Q.
The Louisell transformations are from y and dy/dt to a complex variable a, defined as


a = dy

dt
+ iω�

1y,

a� = dy

dt
− iω1y.

(26)

The inverse transformations are


y = −i
a − a�

ω�
1 + ω1

,

dy

dt
= ω1a + ω�

1a
�

ω�
1 + ω1

.

(27)

The equation of motion in terms of a is then

da

dt
= iω1a + i

km(t)

m

a − a�

ω�
1 + ω1

+
F(t)

m
. (28)

We drive the system with the external drive F(t) = F0 cos (ωdt + φ), with a parametric
modulation at twice the drive frequency, km(t) = �k sin (2ωdt). We assume that the solutions
to the equation of motion have the form a(t) = Aeiωdt + Be−iωdt, including only the fundamental
drive frequency. Inserting this in the equation of motion (28) yields the intermediate result

i(ωd − ω1)Aeiωdt − i(ωd + ω1)Be−iωdt = �k

2m(ω1 + ω�
1)

[(A − B�)(e3iωdt − e−iωdt)

+ (B − A�)(eiωdt − e−3iωdt)] +
F0

2m
(eiωdt+iφ + e−iωdt−iφ). (29)

In the high-Q limit, we keep only the terms at the fundamental frequency ±ωd , which yields
the equations

i(ωd − ω1)A = �k

2m(ω1 + ω�
1)

(B − A�) +
F0

2m
eiφ,

− i(ωd + ω1)B = − �k

2m(ω1 + ω�
1)

(A − B�) +
F0

2m
e−iφ. (30)

Defining the dimensionless variables Ã = 2m�1A/F0 = Ãr + iÃi and B̃ = 2m�1B/F0 =
B̃r + iB̃i, we approximate where appropriate ω1 + ω�

1 ≈ 2�1 and ωd + ω1 ≈ ωd + �1. We define
the parameter α = �k/4m�2

1 = �k/4keff , and make the frequency dimensionless through
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z = ωd/�1, ultimately yielding the dimensionless set of equations


(z − 1)Ãr +
1

2Q
Ãi = α(Ãi + B̃i) + sin φ,

−(z − 1)Ãi +
1

2Q
Ãr = α(B̃r − Ãr) + cos φ,

− (z + 1)B̃r = − α(Ãi + B̃i) − sin φ,

(z + 1)B̃i = − α(Ãr − B̃r) + cos φ.

(31)

For z = ωd/�1 close to the resonance value of 1, within the natural resonance width of the
resonator, Ã completely dominates over B̃, and the latter can be neglected. For frequencies more
than 2 or 3 times the natural width of the resonance, however, the magnitude of Ã and B̃ are
comparable, and ignoring the counter-rotating term is not a good approximation.

For z near 1, we neglect B̃, leaving


(z − 1)Ãr +
1

2Q
Ãi = αÃi + sin φ,

−(z − 1)Ãi +
1

2Q
Ãr = −αÃr + cos φ.

(32)

Exactly on resonance, at z = 1, these resolve to


Ãr = 2Q cos φ

1 + 2αQ
,

Ãi = 2Q sin φ

1 − 2αQ
,

(33)

bringing out the overall nature of the response as a function of the modulation parameter α. As
α increases from zero, Ãi increases and Ãr decreases. There is a critical value αc = 1/2Q,
where Ãi diverges to infinity; beyond that modulation value, the system bifurcates to one
with two resonances, close to z = 1, but separating in frequency as α increases past αc (this
latter behaviour is not apparent from (33), but can be seen by solving the full z-dependent
equations (32)).

We can extract the displacement dependence from these results, using the inverse
transformation y(t) ≈ Im a(t)/�1

y(t) = F0

2m�2
1

[(Ãi + B̃i) cos ωdt + (Ãr − B̃r) sin ωdt]. (34)

For frequencies near resonance

y(t) ≈ F0

2keff
(Ãi cos ωdt + Ãr sin ωdt). (35)

Exactly on resonance, at z = 1, this is

y(t) ≈ QF0

keff

(
sin φ

1 − 2αQ
cos ωdt +

cos φ

1 + 2αQ
sin ωdt

)
. (36)
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Figure 4. Displacement amplitude as a function of frequency z = ωd/�1, for
three values of the parametric modulation α = 0 (——), 0.03 (– – –) and 0.04
(–·–·–·–). These are calculated with the phase φ = π/2 and Q = 10. Displacement
amplitude is plotted as (keff/F0)y(t).
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Figure 5. Gain as a function of parametric modulation α, for φ = 0 (- - - -) and
φ = π/2 (——). Frequency z = 1 and Q = 10.

For α = 0, the on-resonance displacement is y(t) = QF(t)/keff (the simple harmonic oscillator
result). For α �= 0, the displacement amplitude depends on the phase φ; for φ = 0, the
displacement is smaller than the simple harmonic oscillator result (at all frequencies), while
for φ = π/2, the displacement is always larger. The amplitude of motion is linear in the drive
F0, but as α increases the response diverges at the critical point. Here, we focus on the subcritical
regime.

First we examine the displacement as a function of frequency for different values of α. This
is shown in figure 4 for three values of α, using a resonator with quality factor Q = 10, although
the same behaviour applies to higher natural Q values. The critical value is at αc = 1/2Q = 0.05.

In figure 5, we show the parametric gain G(α, φ) as a function of the modulation α for
different phase angles φ. The gain is defined, as in Rugar and Grütter [15], as the maximum
displacement amplitude with modulation (α �= 0) divided by that with α = 0, both calculated at
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Figure 6. Left: gain as a function of frequency z = ωd/�1, with parametric
modulation α = 0.04, for φ = 0 (- - - -) and φ = π/2 (——). Right: gain as
a function of phase angle φ, with frequency z = 1 and modulation α = 0.04.
Quality factor Q = 10.

the resonance frequency z = 1. Minimum gain is achieved when φ = 0 and maximum gain for
φ = π/2. For φ = 0, the gain is G(α, 0) = 1/(1 + 2αQ), reaching a minimum at the critical value
αc = 1/2Q of G(αc, 0) = 1/2. For φ = π/2, the gain is G(α, π/2) = 1/(1 − 2αQ), diverging
as α → αc.

In figure 6, we show the gain as a function of the drive frequency and phase, for a resonator
with Q = 10.

2.2. Noise in a parametric oscillator

What effect does noise have on this system? We consider exclusively the subcritical regime and
take into account only the thermomechanical noise due to the finite Q. The oscillator is driven
at its natural resonance by a signal F0 cos(�1t + φ0) (with φ0 held fixed at π/2 for maximum
gain) and modulation kp(t) = �k sin(2�1t). The spectral density of the noise force for a simple
harmonic oscillator is SF(ω) = 2kBTm�1/πQ. The displacement y(t) can be resolved into its
quadrature phases, y(t) = Yc(t) cos �1t + Ys(t) sin �1t, where Yc(t) and Ys(t) are time-varying
amplitudes, driven by noise about their average values Yc0 and Ys0, the latter determined by F0

and φ0.
The spectral density Sc(ω) for fluctuations in the cosine displacement component Yc is,

averaging over the noise phase angle φn,

Sc(ω) = 2

(2m�2
1)

2
〈(Ãi(1 + ω/�1) + B̃i(1 + ω/�1))

2〉φn
SF(�1 + ω) (37)

≈ kBT

πkeffQ�1
〈Ã2

i (1 + ω/�1)〉φn
, (38)

with the terms Ã and B̃ evaluated at the dimensionless frequency z = 1 + ω/�1, so that
ω represents the offset from the centre frequency �1. For the equivalent noise in the sine
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Figure 7. Noise powers Sc(ω)/Sc(0) (red) and Ss(ω)/Ss(0) (blue) for different
values of α = 0 (black), 0.03 (– – –) and 0.04 (–·–·–·–). Quality factor Q = 10.

component Ys, we have

Ss(ω) = 2

(2m�2
1)

2
〈(Ãr(1 + ω/�1) − B̃r(1 + ω/�1))

2〉φn
SF(�1 + ω) (39)

≈ kBT

πkeffQ�1
〈Ã2

r (1 + ω/�1)〉φn
, (40)

where in the second approximation we drop B̃ in favour of Ã.
For offset frequencies ω ≈ 0, we can take the z = 1 result for Ã and find


Sc(ω ≈ 0) ≈ 2QkBT

πkeff�1

1

(1 − 2αQ)2
,

Ss(ω ≈ 0) ≈ 2QkBT

πkeff�1

1

(1 + 2αQ)2
,

(41)

having averaged over the noise phase angles φn.
We see that for frequencies close to zero (i.e. slow fluctuations in Yc,s), the noise in the

cosine quadrature is amplified by the square of the gain G(α, π/2), while the noise in the sine
quadrature is reduced by the square of G(α, 0); the maximum reduction is a factor of 4 in noise
power.

For frequencies offset from zero, we use the results for Ãr and Ãi from (32). The overall
scale of the response follows that given by (41), but with a more complex frequency dependence.
In figure 7, we display the frequency dependence for Sc(ω) and Ss(ω), for different values of α.
Both of the noise powers are normalized to their values at z = 1 (ω = 0).

Note that Sc becomes narrower as α increases, and that the noise power at ω = 0 increases
faster than that off-resonance. In contrast, Ss becomes broader, and the noise off-resonance
does not decrease as quickly as that on-resonance, making the scaled plots at larger α grow in
comparison to those for α = 0.

The phase noise corresponding to the displacement noise is

Sφ(ω) = 1

2

Sc(ω) + Ss(ω)

|Yc0|2 + |Ys0|2 , (42)
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where Yc0 and Ys0 are the displacement amplitudes from the driving force F0. The interesting
limit is where the modulation approaches the critical value αc, which is where Sc(ω) dominates
the noise, and where Yc0 (the cosine-driven term) dominates over Ys0. In this limit Sφ(ω) ≈
Sc(ω)/2|Yc0|2.

The zero-offset displacement noise can be written as Sc(0) = (2kBTkeff/π�1Q)(|Yc0|/F0)
2,

independent of α. Hence, the noise on resonance is amplified by the same amount as the square
displacement. The parametric amplifier does not select signal to noise, and thus does not improve
signal-to-noise on-resonance (or off-resonance). Hence, we can write the phase noise as

Sφ(ω) ≈ kBTkeff

π�1QF 2
0

Sc(ω)

Sc(0)
, (43)

with a frequency dependence identical to that in figure 7. The force F0 and modulation α

ultimately are limited by a maximum displacement Yc0 ≈ L, which corresponds to F0,max =
keffL(1 − 2αQ)/Q.

We can calculate the Allan variance from the phase noise as

σ2
A(τA) = 2

(
2

�1τA

)2 ∫ ∞

0
Sφ(ω) sin4(ωτA/2) dω (44)

≈ 8kBTkeff

πQF 2
0

1

u2

∫ ∞

0

Sc(z)

Sc(0)
sin4(uz/2) dz (45)

with u = �1τA. With the maximum force limited by amplitude considerations, the minimum
Allan variance is

σA,min(τA) =
√

4

πQ

kBT

keffL2
IA(u), (46)

with dimensionless integral is given by

IA(u) = 1

u2

∫ ∞

0
〈Ã2

i (1 + z)〉φn
sin4(uz/2) dz. (47)

This can be compared with the simple harmonic oscillator result (21). Note that theAllan variance
depends on the integral IA(u) through the relative thermal to motional energy scale as well as
the quality factor, but that all the dependence on the parametric modulation α is contained in
the integral. In figure 8, we display the dependence of the Allan variance integral IA for different
α, for Q = 10.

Here, we find a surprising result: at short averaging times (large frequencies), the Allan
variance integral is independent of the parametric modulation α, while at long averaging times,
where the noise close to the carrier is sampled, the Allan variance becomes worse with increasing
parametric amplification. For short sampling times, u�1τA < 1/Q, the noise is dominated by
the off-resonant, unamplified noise, and does not change with the amplification. The surprising
result that the amplification makes the variance worse is due to the scaling of the maximum
applicable force F0, which becomes smaller as α increases due to the increased amplification. If
one instead uses a fixed force F0, set small enough so that at the largest α < αc, the maximum
displacement remains less than the beam length, the noise improves with increasing α. However,
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Figure 8. Integral IA(u) from (47), calculated for α = 0 (——), 0.03 (– – –) and
0.04 (–·–·–·–). Quality factor Q = 10.

as the overall variance is reduced if the maximum possible force amplitude F0 is used, this is not
a fair comparison. Hence, the best performance is achieved for zero parametric amplification,
i.e. for a linear simple harmonic oscillator.

We note that the form of the integral for small u in figure 8 does not match that for small u in
figure 2 for α = 0; this is because we are using the approximation such that B̃ can be neglected,
which is not very accurate for large frequencies z, corresponding to small averaging times u in
figure 2. Using the full expression involving both Ã and B̃ in the integral for Sφ gives the same
result, for α → 0, as for the linear harmonic oscillator.

3. Conclusions

We summarize the results here by the following simple statement: the highest sensitivity, highest
measurement bandwidth in mass-sensing applications of nanomechanical resonators, is achieved
for the smallest resonators that can be fabricated with the smallest aspect ratio L/t, operated at
the lowest practicable temperatures with the highest achievable Q. Even at room temperature,
with moderate quality factors Q ≈ 1000, and reasonable (∼ millisecond) averaging times,
single-proton sensitivity can be achieved with relatively easily fabricated cantilever dimensions.
However, we also arrive at the surprising result that parametric amplification does not give
improved performance over that achieved in the linear regime.
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